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Abstract-This paper reports an analytical solution and a numerical study of natural convection in a
rectangular porous layer heated and cooled with uniform heat nux along the vertical side walls. It is shown
an alyt ically that in the boundary layer reg ime the vertical boundary layer thickness is con stant (independent of
altitude) and the core region is motionless.The vertical temperature gradient is the same constant everywhere
in the porous layer. Numerical results are reported in the range 100 < Ra < 5000, 1 ~ IIIL ~ 10, where
Ra = KgPII 2q"/{':1.\'k). The boundary layer analytical solution is shown to agree well with the numerical

results.

l"O~IE1I\CLATURE

cp specific heat at constant pressure
9 gravitational acceleration
II vertical dimension
k thermal conductivity offiuid-saturated porous

medium
K permeability
L horizontal dimension
q" constant heat nux
Ra Darcy-Rayleigh number, equation (10)
T temperature
T"" core temperature
I!.T wall-to-wall temperature difference at

y = constant
II horizontal velocity component
II "" horizontal velocity in the core region
v vertica l velocity component
x ho rizontal position
y vertical position
z horizontal position measured with respect to

the right wall (Fig. 1)

Greek symbols
(X thermal diffusivity, kj(PCp)flu ld

p coefficient of thermal expansion
o boundary layer thickness
). Oseen function
v kinemaiic viscosity
p density
t/J streamfunction
t/J ec core streamfunction

Subscripts
(). dimensionless variables, equations (14)
()R solution near the right wall (Fig. I)

I. 11I\TRODUCTION

THE HEAT transfer by natural convection across a
porous medium heated from the side is a topic of
fundamental importance in diverse fields such as

t Dedicated to the memory of Werner Schultz (1955-1982)
of the University of Stuttgart.

thermal insulation engineering, geothermal reservoir
dynamics and grain storage. The basic model used so
far in the study of porous media heated from the side
consists of a 2-dim.layer with vertical isothermal walls
at different temperatures and with adiabatic top and
bottom walls . This model has been investigated
extensively during the past 20 years,experimentally [1
3] and numerically [4-7]. On the theoretical front,
Weber [8] reports an Oseen -linearized analysis of the
boundary layer regime in a tall layer : Weber's an alysis
was improved by the present author [9] to account for
the heat transfer vertically through the core and, in this
way, to predict correctly the heat transfer rates revealed
by experiments and by numerical simulations. An
integral-type an alysis of the same boundary layer
regime was reported by Simpkins and Blythe [10] and,
for temperature-dependent viscosity, by Blythe and
Simpkins [11]. The corresponding flow in a shallow
layer heated from the side was documented by Walker
and Homsy [12] and Bejan and Tien [13].

The object of the present study is to discuss an
equally plausible situation for the natural convection
phenomenon, namely, heat transfer through the same
2-dim. porous layer when, instead of temperatures,
uniform heating and cooling effects arc prescribed
along the vertical side walls. This model has not been
studied before. At least from the point of view of thermal
insulation engineering, this new model is more
appropriate, particularly if we recognize that iso
thermal side walls are never a feature of fibrous and
granular vertical insulating layers in the building
technology. Vertical solid surfaces separating fluids
which exchange heat by natural convection always
'float' naturally to a state closely resembling the
'uniform heat flux' condition [14]. The engin eering
importance of the uniform heat flux wall model was
recognized early in the study of natural convection
along a single wall facing a fluid [15] and along a single
wall facing a fluid-saturated porous medium [16].

2. nOU1I\IlARY LAYER SCALI1I\G

Consider the 2-dim. rectangular porous layer shown
in Fig. 1. The system is heated along the right side and
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y
insulated

L u

porous layers with isothermal side walls [8, 10]: what
makes the present problem new is the uniform heat flux
condition maintained on both vertical walls, equation
(1). Recognizing 0 and II as the x and y scales in the
boundary layer region of interest (0« ll), the
conservation statements (2}-{4) require the following
balances:

- 0 L x
(5)

q" porous
medium

-H/2777'=d

q"

(~ or !:.) ~ Kgfl T,
H 0 v 0

(6)

(2)

(7)
FIG.1.Schematic of2-dim porous layer with uniform heat flux

from the side.

cooled along the left side uniformly, i.e.

« = k (aaT) = constant. (1)
x x=O,L

The top and bottom surfaces of the porous medium are
insulated. The equations governing the conservation of
mass, momentum and energy at any point (x,y) are [8]

au av
-+-=0ax ay ,

(
II T or v T) ~ CI. (!... or .I...-)

/j H /j2 H 2 •

In addition, the uniform heat flux condition (1)requires

" kT. (8)q ~ b =constant.

Noting that in the boundary layer region (/jIB) « 1,the
four statements (5}-{8) may be used to determine the
four unknown scales,

/j ~ B Ra- 1/3,

T ~ q" H Ra- 1/3

k '
(9)

au av KgfJ aT
ay - ax = - -v- ax ' (3)

(4)
where Ra is the Darcy-Rayleigh number based on heat
flux and height,

(11)

(13)

(10)

(12)
cv* aT*-==-,
ax* ax*

KgfJH2q"

Ra=--,--
Cl.vk

It is worth examining the present scaling results (9)and
noting the differences between them and the
corresponding results for porous layers with isothermal
vertical walls [8,10]. The fundamental differenceis that
in the present case the heat fluxis fixed, while everything
else, including the temperature scale; must adjust in
accordance with the value of q" (i.e. with the value of
Ra).

The boundary layer scales (9) suggest the following
nondimensionalization of the governing equations (2}
(4) in the boundary layer region

cu* cv*-+-=0
ox* oy* '

er er (a 2T a2T)
U-+V-=CI. --+--

ax ay ax 2 ay2 '

These equations correspond to having modeled the
porous medium as homogeneous, so that II, v,T, K, g,fJ,
CI. represent the volume-averaged fluid velocity
components, the local equilibrium temperature
between fluid and porous solid, the permeability of the
porous matrix, the gravitational acceleration, the
coefficient of thermal expansion of the fluid, and the
thermal diffusivity kl(pcp)f1uid, respectively. The
momentum equation (3) contains also the Boussinesq
approximation whereby the fluid density p was taken as
equal to Po[l- fl(T - To}] only in the body force term.
Thederivation ofequations (2}-{4) is outlined in greater
detail in earlier papers on natural convection through
porous media [4-8]: thus, the conductivity k is the
stagnant thermal conductivity of the fluid-saturated
porous medium, while the other properties belong to
the flowing fluid.

Of special interest is the buoyancy-induced
circulation in the boundary layer regime, where most of
the fluid motion is restricted to a thin layer 0along each
vertical wall. In order to determine analytically the flow
and temperature field in each boundary layer region, it
is absolutely essential that the scales governing each
region are determined in advance. This problem is
analogous to scaling analyses presented earlier for
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3. ANAL\TICAL SOLUTION

where

As discussed in Weber [8] as well as in a number of
more recent analyses of natural convection in porous
layers with isothermal walls [14, 17, 18], one way to
solve the boundary layer equations (1l)-{13) is by
regarding 11* and aT*lay* as functions ofy* only, on the
LHS of equation (13). The consequence of this
linearization decision is an exponentially-varying
velocity and temperature field in the vicinity of the
vertical walls. Omitting the algebra described already
in ref. [8], for the boundary layer lining the left (cold)
wall in Fig. 1 we obtain

11*00 = odd function of y*. (23)

Equation (20) states that in order for 11*00 to be an odd
function ofy*' the unknown function 1/}.2 must be even
in y*. But If}. represents the dimensionless boundary
layer thickness (a positive finite quantity), hence, if 1/},2
is an even function of y* then If}. and i.. are also
symmetric about y* = O. In conclusion, the centrosym
metry property of the core also requires

}, = even function of y*. (24)

Finally, we examine the make-up of the energy
integral condition (19) and recognize that: (1) the RHS
is always an even function of y* and (2) the LHS is
always an odd function of y*. This means that the only
solution capable of satisfying equation (19) and the
centrosymmetry conditions (21)-{24) is the one which
makes both sides of equation (19) zero simultaneously.
Therefore, the solution is

}, = constant,

T~oo = even function of y*, (22)

from the boundary layer region. In general, the core is
also characterized by horizontal fluid motion (because
v* --> 0 as x, --> co). The horizontal core velocity 11*00
follows from the continuity equation (Il) combined
with equation (16) in the limit x* --> 00,

11*00 = d~* G2). (20)

According to the Oseen solution 'matching'
approach described by Weber [8] and, earlier, by Gill
[19], the unknowns ()., T*(xo> 11*(0) are determined based
on the energy integral (19) and the condition that the
core flow must be centrosymmetric about x = L12,
Y = 0 on Fig. 1. To the present solution, the
centrosymmetry property means that

T*oc =odd function of y*, (21)

(14)
v

v*=---
!!-Ra 2 /3

H

T

II
11* =-a.--

-Ra1/ 3

H

T*=-,,----
~llRa- 1/ 3

k

x* = H Ra 1/3'

x

Using the same notation, the uniform heat flux
condition (1) becomes

et; L 1/3
- = I at x* = 0, and at x, = H Ra . (15)
ax*

As shown in the next section, the reward for having
conducted the scaling analysis is that the dimensionless
governing equations (1l)-{13) have exactly the same
form as for other boundary layer flows studied in the
past.Thus, in order to solve equations (11)-{13) itis wise
to rely on existing (proven) analytical methods such as
the Oseen linearization technique used by Weber [8] in
the case of porous layers with isothermal side walls.

The temperature profile (17) satisfies already the
uniform heat flux condition at x* = 0, equation(15). In
general, the parameter }. is a function of y*: this
function is determined from energy integral condition
[8]

(25)T*oo = }.2y*,

11*00 = O.

At this juncture, the important conclusion is that in
the boundary layer regime of a porous layer with
uniform heat flux the core is motionless (v*oo = 11*00
= 0) and linearly stratified (T~oc = }.2 = constant).
Furthermore, the boundary layer thickness II}. is
constant, however, unknown at this point. Compared
with the core and boundary layer flows developed by
Weber for porous layers with isothermal walls, the
present solution is strikingly simple. In fact, the
simplicity of this solution led the present author to
doubt it for about 6 months and, in the meantime, to
conduct a complete numerical simulation of the
phenomenon: the numerical results are reported in the
next section, demonstrating that the analytical solution
is indeed correct.

The solution is finally completed by determining the
unknown constant Z: this constant must come from the

(19)

(18)

(16)

d ( 1 ) _ r.: I
dy* 2},3 -7- .

Function T*oc(y*) is unknown and represents the
temperature distribution in the 'core', i.e. sufficientlyfar

i
oo

( et; aT*)d laT*looII -+V - x = --
o * ax* * ay* * ax* 0

which in the present case yields
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(26)

FIG. 2. Control volume argument showing that the net upflow
of enthalpy must be balanced by conduction downward, at any

level y.

(29)

(28)

(13)

and (17)

4. I"\U~I[RICAL SOLUTIOI"\

Substituting expressions (16), (17) and (28) , (29) into
equation (27), the control volume energy conservation
(26) yields the value of L,

}. = (~YIS RalliS. (30)

At this point. the boundary layer solution is
complete. In order to compare it most effectively with
the numerical solution outlined in the next section, it is
useful to calculate 'overall' theoretical quantities such
as the mass flowrate of one boundary layer and the
average temperature difference between the vertical
walls. In dimensionless form, the boundary layer
flowrate is the same as the 'core' value of the
streamfunction (11= "'y. V = -"',), in other words

,I, = _ [" v dx =~ = (H)-2IS
Ra-2/1 S (31)

'i' *00 Jo * * }.2 L '

The temperature difference liTbetween the two walls is
independent of y, because in the boundary layer regime
the temperature of each vertical wall varies linearly in}'.
in precisely the same manner as the core temperature
T. 00 6'*), In dimensionless form, the overall tempera
ture difference is

2 (H) -lISst; = (TR*)r~o-(T*)x~o = J. = 2 L Ra- 1/1S.
(32)

Noting that a T. == liTj[(q"lk)lI Ra- 1/ 3],equation (32)
is equivalent to predicting the overall Nusselt number

(q"/liT)l/ Ra1/3 1 (11)1/5
Nil = =-- = - - Ra2/ S (33)

k liT* 2 L .

The purpose of the next section is to test numerically
the analytical solution developed above for the
boundary layer regime. Before performing this test,
however, it is interesting to note that the Nusselt
number predicted by equation (33)disagrees in a scaling
sense with predictions available up to this point based
on the isothermal-wall model. For example, translated
into the notation of equation (33), Weber's Nusselt
number [8] reads Nil = r 1/3 Ra 1f3 •

A finite difference scheme was employed in order to
solve the steady-state governing equations (2}-{4) for a
given set of HILand Ra.The complete equations (2}-{4)
were first placed in dimensionless form by using the
boundary layer scaling (9),

a
2
", . +Ra- 2/3 a2

", . = _ aT*
ax; ay; ax*'

-,r-------------..,
I I,

I
I

I
I

: arbitrary
: length

_J 1

conlrol;
volume:

It is worth noting that the control volume analysis of
Fig. 2 was used previously in the context of natural
convection in porous layers (e.g. ref. [9]). However, this
is the first time that equation (26) applies exactly,
because the heat Ilux is the same on both sides of the
layer. The LHS of equation (26) is easily evaluated by
breaking the integral into two parts, one for each
boundary layer,

tL

pcpvT dx = tee pCpl'To dx*+ tee PCpl'RTRO dz*.

(27)

rL

pcpvT dx = rL

k aT dx, at any}' = constant.
Jo Jo ay

only geometric fact left out of the discussion so far,
namely, the fact that the horizontal dimension of the
system is L. [Note that so far L does not appear in the
solution represented by equations (16), (17) and (25).]
As we search for J., we come across another interesting
property of the Ilowpattern considered in this paper. As
shown in Fig . 2, the two boundary layer streams move
parallel to the vertical walls. Let IiI be the Ilowrate of
each stream, and liT the 'average' temperature
difference between streams at any }' = constant.
Consider now the control volume shown with a dashed
line: the vertical stream counterllow pours energy into
the control volume at a rate lilCpliT. Since the heat
transfer collected by the control volume over the right
wall leaves through the left wall unchanged, and since
the top wall is insulated, the enthalpy inllow lilCpliT
must be balanced exactly by thermal diffusion across
the arbitrary}' = constant surface. Thus at any level y
along the boundary layer, the enthalpy convected
upward by the boundary layer counterllow is always
balanced by vertical heat conduction through the cross
section L,

The new coordinate z is the horizontal position
measured away from the heated wall (z = L-x,
z*" = zlo). The dimensionless velocity and temperature
profiles along the right wall (subscript R) are obtained
by following the procedure leading to equations (16)
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Table I. Summary of numerical results for natural convection in a 2·dim. porous layer with uniform
heatllux from the side

II/L Ra t/!.m3... t/I. ", (~T.l,,=O (~T.l".= ± 1/2 (~T.l.q ,(J 2 ) ).

loo 0.470 0.541 1.808 2.392 1.471 1.359
200 0.464 0.493 1.652. 2.434 1.405 1.424

2 200 0.327 0.374 1.277 1.806 1.223 1.635
400 0.329 0.341 1.216 1.859 1.168 1.713

lQoo 0.312 0.302 1.154 1.891 1.099 1.821

4 500 0.207 0.251 t 1.386 1.oo2 1.997
lQoo 0.222 0.229 1.028 1.437 0.956 2.091
2000 0.228 0.208 t 1.454 0.913 2.190
4000 0.223 0.190 t 1.448 0.872 2.294

10 5000 0.1272 0.1279 t 1.020 0.715 2.796

t Due to the limited output capability of the personal computer, these values were not recorded.

at/!. et; o'P.aT. a2T. _2/30ZT.
-----=--2 +Ra -z-· (14)ay. ax. ax. oy. ax. oy.

The boundary conditions corresponding to this
formulation are

1

(t/!., T.)new-(t/!., T.)old I,;::, 10- 6 (16)
(t/!., T.)old "'" .

Ten different cases (HjL, Ra) were solved numeri
cally: Table 1 lists the main results of the numerical
solution in each case. Except for the last case (HjL = 10,
Ra = 5000), the present solutions were obtained using
the grid N x = Ny = 16. This grid proved adequate in
the sense that finer grids led to AT. and "'. co values
within 1% of the values listed in Table I. Convergence
was achieved after 1000-1200 iterations; speed of
execution was not a critical issue since the entire work

T.2o-2

FIG. 3. Numerical vs theoretical temperature distribution in
three vertical planes (II/L = 2, Ra = 1000).

-1/2 L......<_...L.....IC---L..Jc----"-_----'-_--''----l

o

1/2 ,---r---.-----,--,..--,-r--r-

Y.

was done on a personal computer (Apple II). The grid
used for the last case of Table 1 was N" = 16, Ny = 20,
and convergence occurred after 2900 iterations. The
acceptable performance of the personal computer vis
a-vis'accuracy' in natural convection was documented
by the present author in an earlier article [20] .

Figures 3 and 4 show the temperature distribution
along the two vertical walls and in the vertical mid
plane of the porous layer (at x = Lj2). This figure is
presented in order to test the chief property of the
theoretical solution, namely, the linear variation of
temperature with altitude, regardless of x. The
numerical curves show clearly that almost throughout
the cavity the temperature varies linearly with altitude.
The .thermal stratification is independent of x, hence,
the wall-to-wall temperature difference is practically
constant for most of the layer height ll. Deviations from

. the theoretically predicted pattern occur near the top
and bollom extremities where the vertical temperature

L
at x. = 0 and x. = H Ra l

/
3

•

(15)

et;
"'. =0, -= 1ax. '

Finite difference approximations of equations (13)
and (14) were obtained by applying the scheme
described in detail by Bankvall [5]. The 0 < x. < Ljo
interval was divided into N x equal segments separated
by N" +1 nodes. Likewise, the -! < Y. <! interval
was divided into N; segments . The numerical work
started with postulating a certain distribution of flow
and temperature, namely, no-flowte, = 0 everywhere)
and pure conduction (T. = x.). Based on these
assumed fields, the momentum equation (13) was used
to update, node-by-node, the"'. field. Next, the energy
equation (14) was used in the same manner to update
the T. field. The values of T. on the four boundaries
were calculated from three-node approximations of the
temperature gradient normal to the wall [equation
(15)]. The numerical work of updating the v; and T.
fieldswas repeated until the changes in "'. and T. atany
node became small enough to satisfy the convergence
criterion
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Y.

FIG. 4. Numerical vs theoretical temperature distribution in
three vertical planes (ll/L = 4, Ra = 10(0).

Ra1000

H/L:

o 1
r,2

o 4

o 10

o
o

0.1 '--_---'_-.L-----'-~--'-..........~__--'-_ _'___'___'__'

100

indicates that the fluid circulates only through
relatively thin layers along the top and bottom walls,
leaving the core region practically motionless. Thus, the
core region between walls with uniform heat flux differs
fundamentally from the core between isothermal walls:
in the latter, core fluid motion is present at any level y*,
regardless of Rayleigh number [11].

Figure 5 shows also that the theoretical core
streamfunction 1jJ*00 agrees quantitatively very well
with the numerical value of ljJ*max' Similar agreement
was found in the remaining cases (ll/L, Ra) solved
numerically and listed in Table 1. Figure 6 shows the
ratio IjJ*maJIjJ*00 in the range 100 < Ra < 5000 covered
by numerical simulations. In all cases, the match
between theory and numerical experiment is \~ithin
17%.The fact that despite the width of the Ra range on
Fig. 6, the ratio 'II *maJIjJ*00 does not vary appreciably is
a strong indication that the boundary layer solution is
correct.

Further evidence that the boundary layer solution is
correct has been assembled in Fig. 7. The numerical
solution discussed earlier in Figs. 3 and 4 showed that
the most pronounced departure from the theoretical
temperature pattern takes place in the vicinity of
the top and bottom walls. Figure 7 shows this maxi
mum departure in relative terms, as the ratio

FIG. 6. The maximum numerical streamfunction value (t/J*maJ
vs the theoretical core value (t/J*",), for the ten cases (lI/L, Ra)

investigated numerically.

T.2o-2

o

-1/2 '--'----'-'-_-'-'---_---L-_--"-_--->_----'

Y.

1/2

gradient must vanish. Figures 3 and 4 show that the
boundary layer theory predicts adequately the degree
of thermal stratification and the wall-to-wall tempera
ture difference. In conclusion, the numerical solution
verifies qualitatively and quantitatively the tempera
ture field predicted by the boundary layer theory
reported in the preceding section.

Figure 5 tests the main characteristic of the
theoretical flow field, namely, the 'no-flow' condition
which must prevail in the core. The figure shows the
streamfunction in the vertical mid-plane of the porous
layer. The remarkably flat central portion ofthe profile

o

Ro

o
o0 r,

r,
r, 0 0

0

H/L:

o I

r,2

04

010

1000
0.2 '--_---'_-.L-----'-~--'-..........~,___-~--'---'---'--'

100

2

FIG. 7. The wall-to-wall temperature dilTerence at y = ±1l/2,
vs the theoretical value llT* given by equation (32).

, 3
: Ra=IO

: H/L=2

Ra=IO"

H/L=4

-1/2 '-'=::::=....-..l...-_...I..-_--'--_--'

o 0.2 0.4

(1fI.I"Ll2

FIG. 5. Numerical results for the streamfunction in the vertical
mid-plane x = L/2, and comparison with the theoretical core

value t/J*",.
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(AT*)}'.=±1/2/AT* where AT* is the theoretical
value yielded by equation (32). It is clear that in the
entire range 100 < Ra < 5000 this ratio is practically
constant (roughly 1.5). Therefore (AT*)}'.=±1/2 scales
with the theoretical AT*, in other words, the real tem
perature dilference at allY level along the vertical
walls scales with the temperature difference derived
theoretically for the boundary layer regime [equations
(14)and (32)].

5. CO:\,CLUDll"G RE:\IARKS

This paper outlined an analytical solution for the
phenomenon of heat and fluid flow by natural
convection in a 2-dim. porous layer with uniform heat
flux from the side. The analytical study focused on the
boundary layer regime (15 « L). The heat and fluid flow
pattern was shown to differ substantially from the
boundary layer regime in a layer with isothermal walls
[8]. The main characteristics of boundary layer
convection in a layer with uniform heat flux are:

(1) constant boundary layer thickness, of the order
of c5j}. -c u Ra- 2/ S (HIL)-IIS;

(2) motionless core region (II -> 0, V -> 0);
(3) linearly stratified core region, with a vertical

temperature gradient equal to

( " ) " (1I)2I
S(oTloy) = ~ Ra- 1/3 )2 =~ Ra- IIS - .

I cor. k . k L'

(4) wall temperature increasing linearly with alti
tude at the same rate as (oTloY)cor., hence, altitude
independent temperature differences between walls;

(5) in any horizontal cut through the layer, an exact
balance between the net upflow of enthalpy and the net
downflow of heat conduction.

The main features of the theoretical boundary layer
regime were tested and proven correct based on a
complete numerical simulation of the phenomenon, in
the range 100 < Ra < 5000, 1 ~ HIL ~ 10. As ex
pected, the boundary layer solution breaks down in the
vicinity of the top and bottom adiabatic walls. The
height of the top and bottom end regions, c5u, in which
the theoretical boundary layer solution breaks down
can be determined using scale analysis. The boundary
layer stream prc5 enters the c511 region and travels
parallel to the adiabatic wall; from one end of the
adiabatic wall to the next, the stream experiences an
enthalpy drop of order (pvc5)cpATcaused by direct heat
conduction to the core across a temperature difference
of order AT and a conduction thickness bu. We have

AT
pvc5c AT-kL-

p c5
11

or, using equations (9),

Dll _ L Ra- 1/3•

H H

Therefore, as 1IIL and Ra increase, the top and bottom
regions Dll decrease, and the vertical boundary layer

IDlT26: 9-F

regime occupies most of the porous layer. This trend
is confirmed by Figs. 3 and 4 (both of which are for
Ra = 1000): as HIL increases from 2 to 4, the top
and bottom regions diminish in height. The same
trend is confirmed by Fig. 5.
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REGIME DE COUCHE LIMITE DANS UNE COUCHE POREUSE AVEC UN FLUX DE
CHALEUR UNIFOR~1E LATERAL

Resume-On donne une solution analytiqueet numerique de laconvection naturelle dans unecouche poreuse
rectangulaire chauffee et refroidie avec des flux uniformes Ie long des parois verticales, On montre
analytiquement que, dans Ie regime de couche limite, I'epaisscur de la couche limite verticale est constante
(independante de I'altitude) et que la regioncentrale est sans mouvement. Le gradient de temperature vertical
est Iememe et constant partout dans la couche poreuse.Des resultats numeriques sent fournispour 100 < Ra
< 5000, I ,;;; lI/L ,;;; 10, ou Ra = Kg/i1I 2q"/(cn·k). La solution analytique de couche limites'accorde bien avec

les resultats numeriques,

GRENZSCHICHTSTROMUNG IN EINER POROSEN SCHICHT
MIT GLEICHFORMIGEN WXRMESTROM VON DER SEITE

Zusammenfassung-In dieser Arbeit wird tiber analytische Losungen und numerische Untersuchungen WI'

freien Konvektion in einer rechteckigen porosen Schicht, welchean den vertikalen Seitenwanden mit einem
gleichforrnigen Wdrmestrom beheizt und gekuhlt wird, berichtet. Die analytische Betrachtung zeigt, daB in
der Grenzschichtstrornung die Dicke del' vertikalen Grenzschicht konstant ist (unabhangig von der Hohe)
und im Kerngebiet keine Bewegungstattfindet. Der vertikale Temperaturgradient in der porosen Schicht ist
konstant und ilberall gleich. Die numerischen Ergebnisse sind fiir die Bereiche von 100 < Ra < 5000 und
I ,;;; lI/L,;;; 10, mit Ra = Kg/iH 2q"/(':f.\'k), dargestellt. Die analytische Losung fiir die Grenzschicht zeigtgute

Ubereinstimmung mit den numerischen Ergebnissen.

PE:>KHM nOrPAHH4HOrO CJl051 B nOPHCTOM CJlOE nPH PABHOMEPHOM
HArPEBE CoOKY

Aunorauaa-c-Ilpencraaneno auannrusecxoe peureane II 'I IIc.1eII110e accnenoaanue eCTeCTBcIIIIPii
KOIIBeKUlI1I B npastoyrcnsnosr noplICTO~1 cnoe npn pasuoxrepnoxt narpese II oxna)l(.LlCHIIII ero
aepruxansnux 60KOBblX CTeIlOK. Ananuraxecxoe peuienue nOKa3bIBaeT, 'ITO B pe)l(lI~le norpaunxuoro
enos TO.1U1l1l1a seprnxansnoro norpaunsuoro enos nocrosaaa (lie 3aBIICIlT OT BbICOTbI), a 06naCTb
1I1Ipa lIenOlIBIIJKlla. Bepruxansuuti 'rextnepa'rypusiti rpanaeur TaKJKe nocrosuen no Bce~IY nopncrosty
cnoio. Ilpezicraanensr 'lIlCnellHble peaym.raru )lJl1l naanaaouoa 100 < Ra < 5000, I ::; H/L::; 10, me
Ra = Kg~lf2q"/(uvk). Floxaaano, 'ITO aaannrnsecxoe peureime norpauusuoro C.101l xopouro cornacyerca

C 'lIlCnellllbI~lIl peaym.rarasm.




